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Occupant-centric 

controls (OCC) 

integrate real-time or 

model-predicted 

building occupancy and 

comfort data with 

centralized building 

controls, tuning energy-

related building services 

to when/where they are 

needed by occupants.

System architecture for occupant-responsive environmental control. From: Kim, J., 

Schiavon, S., and Brager, G. (2018). Personal comfort models – A new paradigm in 

thermal comfort for occupant-centric environmental control. Building and Environment, 
132: 114-124.
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OCC yield a median of 

15/38% HVAC savings 

when based on 

occupancy feedback 

(detection/counting), 

and a median of 20% 

HVAC savings when 

based on comfort 

feedback.
Energy-saving potentials reported by studies using occupancy detection and counting 
to control HVAC system reactively. Adapted from: Jung, W. and Jazizadeh, F. (2019). 
Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and 
energy-efficiency dimensions. Applied Energy, 239: 1471-1508.

Occupancy detection Occupant counting
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OCC can incorporate both occupancy and comfort feedback.

given that tracking can be derived from indoor localization techniques.
In addition, we considered occupants’ activity as a parameter of interest
under comfort modality (i.e., physical processes). It is worth noting that
parameters of interest directly relate to the adopted sensing and data
acquisition technologies under the third tier in our taxonomy. The re-
maining tiers of the proposed taxonomy are as follows:

• In the second tier, we identified building type as the higher-level
context for each study. There are studies that were conducted in
unique environments, such as laboratories, educational buildings,
and banks [11,35–37]. However, the majority of these studies were
conducted in residential and office building environments.• The third tier supports the assessment of the measurement techni-
ques to elaborate on their operational mechanisms and limitations
(research question #2).• The fourth tier is used in the assessment of the inference and
modeling techniques and their performance with respect to occu-
pancy or comfort. Using this rationale, we have assessed the per-
formance of each method in the context of the experimental setup
(e.g., sensor deployment strategy). In doing so, we have relied on
the reported performance indicators (e.g., accuracy) and have dis-
cussed the takeaways.• Lastly, by using the fifth tier, we have organized the proposed HITL
HVAC control strategies and assessed the reported HVAC perfor-
mances with respect to their (1) evaluation setting (simulation, ex-
perimental, or field studies) and (2) scale of the testbeds. We dis-
tinguished simulation-based performance analyses from the others
to shed light on the actual viability of each HVAC modality/tech-
nology. Moreover, since the complexity of occupants’ dynamics in-
creases in larger testbeds [38], we assessed the studies according to
the characteristics of the testbeds.

In the following sections, and for each modality, we presented major
research directions to provide a holistic picture before getting into the
details of technology description and performance assessment for each
major direction.

3. Occupancy-driven human-in-the-loop HVAC modality

3.1. Major research directions

Occupancy is a key parameter in driving demands in building

operations [39], and the occupancy-driven HVAC operation modality
has gained extensive attention in the last decade, mainly inspired by
successes in occupancy-based energy management of lighting systems.
As a result, the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) Standard 90.1 [40] and European
Standards [41] currently call for occupancy-sensing control of lighting
systems. However, occupancy-driven HVAC operation has not been
formalized in standards except for specific cases such as guest rooms in
hotels. Given that HVAC energy consumption surpasses that of lighting
[2] and that legacy HVAC systems do not account for occupancy states
of a given environment, studies have explored the potentials of occu-
pancy-driven HVAC operations.

Upon review and categorization of the selected studies, we have
developed a holistic process map of the occupancy-driven HVAC op-
erations, as presented in Fig. 3. Some of these studies have solely fo-
cused on occupancy inference and occupancy modeling with the po-
tential for integration into HVAC systems, while the rest have also
explored the performance of occupancy-driven HVAC operations.

This process map includes three components. The components (from
left to right) correspond to the third, fourth, and fifth tiers of our pro-
posed taxonomy, respectively. The first component represents occu-
pancy data acquisition that could be either directly used for occupancy
inference (presence, count, and position) or buffered for spatiotemporal
occupancy pattern modeling in a given space. In this direction, we have
synthesized the type of sensing technologies implemented for occu-
pancy-driven HVAC operation. By doing so, we sought to answer (1)
which measurement techniques have been investigated as a single-
sensing method and (2) what combinations in the form of multi-sensor
nodes (i.e., sensor fusion) or sensor network have been implemented.
We also reflected on the distribution of studies in different building
types.

The second component focuses on methods used for inference and
spatiotemporal pattern modeling of occupant presence, number, or
position (i.e., sub-modalities for occupancy-driven HVAC operations).
Information in each sub-modality could be used for different opera-
tional strategies:

• Occupant presence
- Adjusting setpoint and setback temperatures based on occupancy
of spaces or thermal zones (i.e., contextual heating/cooling op-
eration)

- Space preconditioning before occupant arrival

Fig. 2. Human-in-the-loop HVAC modalities of occupancy and comfort along with their parameters of interest.
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Human-in-the-loop HVAC modalities of occupancy and comfort along with their parameters of interest. From: Jung, W. and Jazizadeh, F. (2019). 
Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions. Applied Energy, 239: 1471-1508.
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Personal comfort models are needed for comfort-aware OCC.

A Bayesian learning approach is used to infer thermal preference profiles 
for individual subjects in a real office to support personalized environment 
control. From: Lee, S., Karava, P., Tzempelikos, A., and Bilionis, I. (2019). 
Inference of thermal preference profiles for personalized thermal 
enviornments with actual building occupants. Building and Environment, 
148: 714-729.

Steady-state population models historically used to describe thermal 
perception are unable to capture individual diversity accurately, where
diversity depends on physiological, psychological, and social traits. 
From: Schweiker, M., Huebner, G.M., Kingma, B.R.M., Kramer, R., and 
Pallubinsky, H. (2018). Drivers of diversity in human thermal perception
– A review for holistic comfort models. Temperature, 5(4): 308-342.
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Agent-based models can be used to explore OCC scenarios.

Individual building occupants are represented as simulated agents with rules for interacting with their surrounding environment and other 
occupant agents; behavior rules are driven by thermal comfort models. From: Langevin, J., Wen, J., and Gurian, P.L. (2015). Simulating the human-

building interaction: Development and validation of an agent-based model of office occupant behaviors. Building and Environment, 88: 27-45.
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Research communities around OCC continue to grow.

ASHRAE MTG.OBB: Facilitates development of data, tools, technologies, 
and guidelines enabling integration of occupant behavior in the design, 
operation and retrofit of buildings.
See Chapter 65 of 2019 HVACApplications Handbook: Occupant—
Centric Sensing and Controls. 

International Energy Agency (IEA) Annex 66 – Definition and simulation 
of occupant behavior in buildings: Sought to understand the influence 
of occupant behavior on energy and environment and establish standard 
methods of occupant data collection/representation and modeling.
See http://annex66.org/ for more, including the Annex final report.

IEA Annex 79 – Occupant-centric Building Design and Operation: Seeks 
to continue the work of Annex 66 while expanding application of 
occupant modeling methods in practice.
See http://annex79.iea-ebc.org/ for more.

NSF Future of Work, USC Center for Intelligent Environments: 
Facilitates research concerning human-building interactions (HBI) and 
design of human-centered and –responsive building environments.
See https://www.intelligentenvironments.usc.edu/ for more.
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Multiple data resources are being developed for OCC modeling.

ASHRAE Database II: Successor to the RP-884 database including 
76,000 complete sets of thermal comfort data from around the world.
See Földváry et al (2018), “Development of the ASHRAE Global 
Thermal Comfort Database II” for more.

Global Occupant Database: An international occupant database 
covering occupant presence/movement and human-building 
interactions across buildings and climates.
10 confirmed contributors, looking for more.

Synthetic Occupant Populations (IEA Annex 79, Subtask 3): Generate 
simulated occupant population based on demographics, comfort 
preferences, values, and other factors.
Resource for initializing agent-based models.

Special Collection on Occupant Behaviour in Buildings: Data
Descriptors for an international collection of behavior datasets hosted 
in repositories that mint DOIs.
Based on data monitoring ontology of Mahdavi and Taheri (2017).
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Scout: Rapid, repeatable building energy use impact analysis.
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Scout analysis flow: from ECM definition to impact estimation.

INPUTS ENGINE

For each year, determine adoption of all   
available ECMs (those that have entered 

the market) subject to stock and flow 
dynamics and ECM competition

OUTPUTS

Energy 
Conservation 
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Baseline 
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Type(s) and Tech. Type(s)
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New stock and stock up for replacement or 
retrofit (baseline and ECM)

ECM Competition

Determine which technologies will be 
adopted by different types of consumers 
based on technology CAPEX and OPEX

ECM/Portfolio Cost 
Effectiveness

IRR
Simple Payback 

Cost of Conserved 
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ECM/Portfolio 
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Avoided CO2
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Avoided energy 
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CALCULATION STEP HIGH-LEVEL EQUATIONS ANNUAL SAVINGS OUTCOME

Set baseline, 
estimate technical 
impact potential

Add stock and 
flow dynamics

Add ECM 
competition
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Where ∆M= Tech. potential ECM impact on metric M (energy, CO2, 
cost); Mbase=Total AEO baseline value for metric M ;
Mecm = total value for metric M after application of ECM; 
c, b, f, u, t, v, y=AEO climate zone, building type, fuel type, end use, 
tech. type, bldg. vintage, and year, respectively; X=c, b, f, u, t, v

(∆M:,)X, y = (∆M)X, y ∗ (λJ+λL+λL;)X, y
Where (∆M:,)X, y= Potential ECM impact on metric M (energy, CO2, 
cost) in baseline segment X and year y after technology stock and 
flow adjustment; λJ,, λL, λL; = tech. stock addition rate (from AEO), 
stock replacement rate (1/base life) and retrofit rate (0.01) for AEO 
baseline segment X

(∆M:,,&)X, y = (∆M:,)X, y ∗ a=,#,),
a=,#,) = f((c&9N)#, (cON)#, b)

Where (∆M:,,&)X, y= Potential impact on metric M (energy, CO2, cost) 
in baseline segment X and year y after technology stock/flow AND 
competition adjustment; a=,)= competition adj. fraction for baseline 
segment X, year y, and competing ECM set C
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(in service)
Uncapt.
(other ECM)
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Target OCC ECMs defined for BTO Sensors and Controls (S&C).

Set market 

entry year

Set applicable 

baseline market, 

measure lifetime

Set target 

measure 

performance

Set cost 

effectiveness 

threshold

Find measure 

cost that meets 

threshold

Near-term (2020) 

and longer-term 

(2025) market entry 

years depending on 

measure 

Define separately for 

residential/commercial 

sectors at market entry 

and in 2030

Feasible low, 

medium, and high 

levels based on 

literature

1-3 years simple 

payback based 

on typical 

customer/

organization 

requirements 

Measure-specific 

cost units ($/ft2

floor, $/node, 

$/occupant)
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Target OCC ECMs defined for BTO Sensors and Controls (S&C).
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The S&C target portfolio avoids 3.6 quads energy use by 2050.

Energy Savings by Climate Zone

2015 2020 2025 2030 2035 2040 2045 2050

Year

0

20

40

60

80

C
um

ul
at

ive
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

0

1

2

3

4

An
nu

al
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

Total (Annual)
Total (Cumulative)
AIA CZ5
AIA CZ2
AIA CZ3
AIA CZ4
AIA CZ1

Energy Savings by Building Class

2015 2020 2025 2030 2035 2040 2045 2050

Year

0

20

40

60

80

C
um

ul
at

ive
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

0

1

2

3

4

An
nu

al
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

Total (Annual)
Total (Cumulative)
Residential (Existing)
Commercial (New)
Residential (New)
Commercial (Existing)

Energy Savings by End Use

2015 2020 2025 2030 2035 2040 2045 2050

Year

0

20

40

60

80

C
um

ul
at

ive
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

0

1

2

3

4

An
nu

al
 P

rim
ar

y 
En

er
gy

 U
se

 S
av

in
gs

 (Q
ua

ds
)

Total (Annual)
Total (Cumulative)
Heating (Equip.)
Cooling (Equip.)
Lighting
Ventilation

1.7 quads

3.6 quads

Energy Savings by End Use



15LAWRENCE BERKELEY NATIONAL LABORATORY  |  BUILDING TECHNOLOGY AND URBAN SYSTEMS DIVISION

OCC ECMs are also being used in broader efficiency scenarios.

Scn. 
No.

ECM Set(s) Power Supply Fuel Switching

1 Performance Guidelines (1T) Reference (RB) No

2 Guidelines, Best Available (2T) Reference No

3 Guidelines, Best Available, Prospective (3T)* Reference No

4 Guidelines, Best Available, Prospective Reference Yes (FS0)

5 Guidelines, Best Available, Prospective Reference
Yes + 20% Cost 
Credit (FS20)

6 Guidelines, Best Available, Prospective 
High Renewables 
(HR)

No

7 Guidelines, Best Available, Prospective High Renewables Yes

8 Guidelines, Best Available, Prospective High Renewables Yes, +20%

9 Prospective High Renewables Yes

10 Prospective High Renewables Yes, +20%

*Includes occupant-centric controls (OCC) target technologies
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With high renewable 

penetration, by 2050, 

efficiency and 

electrification can 

reduce building 

energy-related CO2

emissions 70-78% 

relative to 2005 levels.

45% renewable 
penetration
↓62% 2005 CO2
by 2050

Efficiency and 
electrification
↓8-16% 2005 
CO2 by 2050
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>40% of buildings’ 

2005 primary energy 

use must be 

eliminated by 2050 to 

achieve 78% CO2

reductions, with >half 

from added efficiency 

and electrification.

45% renewable 
penetration
↓20% 2005 
primary energy by 
2050

Efficiency and 
electrification
↓12-22% 2005 
primary energy by 
2050
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Prospective envelope, 

controls, and fuel 

switching heating and 

water heating 

technologies achieve 

the largest cost-

effective CO2

emissions reductions. 

*no fuel switching
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Prospective envelope, 

controls, and fuel 

switching heating and 

water heating 

technologies achieve 

the largest cost-

effective CO2

emissions reductions. 

*incentivized fuel 

switching
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

1. Find existing ECM 

definitions of interest 

on the ‘ECM 

Summaries’ page to 

understand key 

parameters and results.
Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

1. Find existing ECM 

definitions of interest 

on the ‘ECM 

Summaries’ page to 

understand key 

parameters and results.
Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

2. Edit existing ECM or 

add new ECM 

definition for your 

technology, generate 

and send for review.

Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

2. Edit existing ECM or 

add new ECM 

definition for your 

technology, generate 

and send for review.

Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

3. Upload results from 

your simulations to the 

‘Analysis Results’ page 

to visualize key impact 

metrics.

Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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Use scout.energy.gov

to communicate the 

broader impacts of 

your own work.

3. Upload results from 

your simulations to the 

‘Analysis Results’ page 

to visualize key impact 

metrics.

Quick Start : https://scout-bto.readthedocs.io/en/latest/quick_start_guide.html
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given that tracking can be derived from indoor localization techniques.
In addition, we considered occupants’ activity as a parameter of interest
under comfort modality (i.e., physical processes). It is worth noting that
parameters of interest directly relate to the adopted sensing and data
acquisition technologies under the third tier in our taxonomy. The re-
maining tiers of the proposed taxonomy are as follows:

• In the second tier, we identified building type as the higher-level
context for each study. There are studies that were conducted in
unique environments, such as laboratories, educational buildings,
and banks [11,35–37]. However, the majority of these studies were
conducted in residential and office building environments.• The third tier supports the assessment of the measurement techni-
ques to elaborate on their operational mechanisms and limitations
(research question #2).• The fourth tier is used in the assessment of the inference and
modeling techniques and their performance with respect to occu-
pancy or comfort. Using this rationale, we have assessed the per-
formance of each method in the context of the experimental setup
(e.g., sensor deployment strategy). In doing so, we have relied on
the reported performance indicators (e.g., accuracy) and have dis-
cussed the takeaways.• Lastly, by using the fifth tier, we have organized the proposed HITL
HVAC control strategies and assessed the reported HVAC perfor-
mances with respect to their (1) evaluation setting (simulation, ex-
perimental, or field studies) and (2) scale of the testbeds. We dis-
tinguished simulation-based performance analyses from the others
to shed light on the actual viability of each HVAC modality/tech-
nology. Moreover, since the complexity of occupants’ dynamics in-
creases in larger testbeds [38], we assessed the studies according to
the characteristics of the testbeds.

In the following sections, and for each modality, we presented major
research directions to provide a holistic picture before getting into the
details of technology description and performance assessment for each
major direction.

3. Occupancy-driven human-in-the-loop HVAC modality

3.1. Major research directions

Occupancy is a key parameter in driving demands in building

operations [39], and the occupancy-driven HVAC operation modality
has gained extensive attention in the last decade, mainly inspired by
successes in occupancy-based energy management of lighting systems.
As a result, the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) Standard 90.1 [40] and European
Standards [41] currently call for occupancy-sensing control of lighting
systems. However, occupancy-driven HVAC operation has not been
formalized in standards except for specific cases such as guest rooms in
hotels. Given that HVAC energy consumption surpasses that of lighting
[2] and that legacy HVAC systems do not account for occupancy states
of a given environment, studies have explored the potentials of occu-
pancy-driven HVAC operations.

Upon review and categorization of the selected studies, we have
developed a holistic process map of the occupancy-driven HVAC op-
erations, as presented in Fig. 3. Some of these studies have solely fo-
cused on occupancy inference and occupancy modeling with the po-
tential for integration into HVAC systems, while the rest have also
explored the performance of occupancy-driven HVAC operations.

This process map includes three components. The components (from
left to right) correspond to the third, fourth, and fifth tiers of our pro-
posed taxonomy, respectively. The first component represents occu-
pancy data acquisition that could be either directly used for occupancy
inference (presence, count, and position) or buffered for spatiotemporal
occupancy pattern modeling in a given space. In this direction, we have
synthesized the type of sensing technologies implemented for occu-
pancy-driven HVAC operation. By doing so, we sought to answer (1)
which measurement techniques have been investigated as a single-
sensing method and (2) what combinations in the form of multi-sensor
nodes (i.e., sensor fusion) or sensor network have been implemented.
We also reflected on the distribution of studies in different building
types.

The second component focuses on methods used for inference and
spatiotemporal pattern modeling of occupant presence, number, or
position (i.e., sub-modalities for occupancy-driven HVAC operations).
Information in each sub-modality could be used for different opera-
tional strategies:

• Occupant presence
- Adjusting setpoint and setback temperatures based on occupancy
of spaces or thermal zones (i.e., contextual heating/cooling op-
eration)

- Space preconditioning before occupant arrival

Fig. 2. Human-in-the-loop HVAC modalities of occupancy and comfort along with their parameters of interest.
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SENSOR advancements are critical for realizing OCC impacts.

Category A: Addressing 

the residential sector’s 

large, untapped 

potential for energy 

savings through OCC.

Category B: Increasing 

commercial savings 

potential by focusing on 

counting, addressing 

ventilation controls.

Category C: 
Establishing reliable

performance data

for OCC measure 

impact analysis.
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Visit scout.energy.gov


